


6 a. Find the magnetic field intensity at P for the Fig.Q6(a).

(08 Marks)

- b. There exist a potential of V = -2.5V on the conductor of 0.02m and V = 15V at r = 0.35m. Determine E and D by solving Laplace equation in spherical coordinates. (07 Marks)
- c. If the magnetic field intensity in region $H = (3y 2)\hat{a}_z + 2x\hat{a}_y$. Find current density.

(05 Marks)

Module-4

- 7 a. For region1, $\mu_1 = 4\mu$ H/m and for region2, $\mu_2 = 6\mu$ H/m. The regions are separated by Z = 0plane. The surface current density at the boundary is $K = 100 \hat{a}_x A/m$. Find B₂ if B₁ = $2\hat{a}_x - 3\hat{a}_y + \hat{a}_z mT$ for Z = 0. (08 Marks)
 - b. A circular conducting loop of radius 40cm lies in xy plane and has a resistance of 20Ω. If magnetic flux density is B = 0.2 cos (500t)â_x + 0.75sin(400t)â_y+1.2cos(314t)â_z. Find induced current in Loop.
 (07 Marks)
 (05 Marks)
 - c. Explain Lorentz force equation.

OR

- 8 a. A conductor of length 2.5m in Z = 0 and x = 4m carries a current of 12A in $-\hat{a}_y$ direction. Calculate uniform flux density in region, if force on the conductor is 12×10^{-2} N in direction by $\left[\frac{-\hat{a}_x + \hat{a}_z}{\sqrt{2}}\right]$ (07 Marks)
 - b. Explain Magnetization and Permeability. (07 Marks)
 - c. Explain force between differential current elements with equation. (06 Marks)

Module-5

9	a.	Given $H = H_m e^{j(wt + \beta z)} \hat{a}_x A/m$ in free space. Find E.	(07 Marks)
	b.	Derive the wave equation for vector E and H field in conducting medium.	(08 Marks)
	c.	Prove that $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$.	(05 Marks)

OR

10 a. Discuss the propagation of uniform plane wave in good conductor and explain skin depth. (08 Marks)

- b. Determine α , β , γ , v, λ , η for damp soil at frequency of 1 MHz given that $\varepsilon_r = 12$, $\mu_r = 1$, and $\sigma = 20m \sigma/m$. (05 Marks)
- c. Find the Amplitude of displacement current density in free space within large power distribution
 - $H = 10^{6} \cos(377t + 1.256 \times 10^{-6}z) \hat{a}_{y}$

2 of 2

(07 Marks)